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Abstract. We regard the bond directed percolation on a square lattice as a discrete-time Markov
process of a one-dimensional interacting particle system. The coefficients in series expansion of
the probabilityPn,m of havingm particles at timen − 1 are studied. We derive the difference
equations for the first and the second series of coefficients and prove that these coefficients are
expressed using the ballot numbers, whose special cases are known as the Catalan numbers.
As a corollary of our results, we prove a part of the conjecture by Baxter and Guttmann that
the correction terms are expressed as rational functions of the Catalan numbers. We also give
approximations for the percolation probability using the present formula.

1. Introduction and results

Directed percolation (DP) introduced by Broadbent and Hammersley (1957) is a simple
probabilistic model of a flow of fluid through a random media. We consider in this paper
the bond DP on a square lattice. This model can be regarded as a discrete-time Markov
processηn of interacting particles on a spatio-temporal plane

V = {(x, n) ∈ Z2 : x + n = even, n = 0, 1, 2, . . .}. (1.1)

Let Ze = {. . . ,−4,−2, 0, 2, 4, . . .} and Zo = {. . . ,−3,−1, 1, 3, . . .}. Each sitex in Ze

andZo takes one of the two states 0 (vacant) and 1 (occupied by particle) andηn is a set
of sites occupied by particles inZe for n = even and inZo for n = odd. Letη0 = {0} and
the time evolution is given by

P(x ∈ ηn+1|ηn) = f (|ηn ∩ {x − 1, x + 1}|) (1.2)

whereP(ω1|ω2) is the conditional probability ofω1 givenω2 and |A| denotes the number
of sites included in a setA. Heref is given as a function of a parameterp as

f (N) =


0 if N = 0

p if N = 1

1 − (1 − p)2 if N = 2

(1.3)

where 06 p 6 1. Sincef depends only on the states of a nearest-neighbour pair of sites,
this process is a special case of the two-neighbour stochastic cellular automata (Domany and
Kinzel 1984, Kinzel 1985). Another definition ofηn is the following. At each bond between
(x, n) and(y, n+1) with y = x±1 we put an arrow from(x, n) to (y, n+1) independently
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of other bonds with probabilityp, which denotes that the bond is open in this direction. The
bonds without arrows are closed. That is, each bond is open with probabilityp or closed
with probabilityq = 1− p. We say ‘there is an open path from(x0, n) to (xm, n+m)’ for
m > 1, if there is a sequence(x0, n), (x1, n+ 1), . . . , (xm, n+m) of points inV such that
for each 06 k 6 m − 1 the bond from(xk, n + k) to (xk+1, n + k + 1) is open and write
(x0, n) (xm, n+m) for short. The setηn is defined as

ηn = {x : (0, 0) (x, n)}. (1.4)

We consider the probability of havingm particles at timen− 1,

Pn,m ≡ P(|ηn−1| = m) (1.5)

for n = 1, 2, . . . . By definition P1,1 = 1 andPn,m = 0 for m < 0 and form > n. Let
the light cone from the origin up to timen − 1: V 0

n = {(x,m) ∈ Z2 : x + m = even,
m = 0, 1, 2, . . . , n− 1,−m 6 x 6 m}. Since the total number of bonds inV 0

n is n(n− 1),
Pn,m can be expressed byp andq = 1 − p as

Pn,m =
∑
i

an,m,ip
n(n−1)−iqi (1.6)

for 0 6 m 6 n, wherean,m,i is the number of bond configurations onV 0
n such that there

are i closed bonds andn(n− 1)− i open bonds and we havem particles at timen− 1. In
the present paper, we first prove the following lemma.

Lemma 1. Form > 1,

an,m,i = 0 if i +m 6 n− 1. (1.7)

This lemma implies that (1.6) can be written as

Pn,m = q−2(m−1)(pq)n−1(pq)m−1p(n−1)(n−2)
(n−1)(n−2)∑

s=0

a(s)n,mp
−sqs (1.8)

where

a(s)n,m ≡ an,m,(n−m)+s . (1.9)

Now we can state the main theorem in this paper.

Theorem 2. For 16 m 6 n

a(0)n,m = 2m

n+m

(
2n− 1

n+m− 1

)
(1.10)

and

a(1)n,m = {(n− 1)2 − (m− 1)}a(0)n,m − (m+ 1)a(0)n,m+1. (1.11)

Remark. The number defined by

bn,m =
(
n+m

m

)
−

(
n+m

m− 1

)
= n+ 1 −m

n+ 1

(
n+m

m

)
(1.12)

is called aballot number(Riordan 1979). Consider a ballot in which candidateA scoresα
votes and candidateB scoresβ voters withα > β. The probability that, during the ballot,A
was always ahead ofB is given bybα−1,β/

(
α+β
α

) = (α−β)/(α+β) (see the Ballot theorem
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in Grimmett and Stirzaker (1992) p 77). We find thata(0)n,m = bn+m−1,n−m. Whenn = m,
bn,m is called theCatalan number,

cn = bn,n = 1

n+ 1

(
2n
n

)
(1.13)

which appears in many kinds of combinatorial problems (Sloane 1973).

This result has, at least, two applications to the DP problem, as we explain below. Let

Pn ≡ P(|ηn−1| 6= 0) =
n∑

m=1

Pn,m (1.14)

which is thesurvival probability of the process at timen − 1. Since this probability is
non-increasing inn, it has a limit called the ultimate survival probability or thepercolation
probability

P(p) = lim
n→∞Pn. (1.15)

It is easy to prove thatP(p) is a non-decreasing function ofp and the critical probability
pc can be uniquely defined as

pc = inf{p ∈ [0, 1] : P(p) > 0}
= sup{p ∈ [0, 1] : P(p) = 0}. (1.16)

Its value has been estimated so far as

0.62986 pc 6 2
3 (1.17)

(the lower bound is by Dhar (1982) and the upper bound by Liggett (1995), see also
Katori and Tsukahara (1995)). It is expected thatP(p) is continuous even atp = pc and it
behaves asP(p) ∼ (p−pc)

β asp → pc+ with a critical exponentβ (Baxter and Guttmann
1988). Since neither of the exact value ofpc nor β are known, it is of interest to provide
approximations toP(p).

Since

Pn − Pn+1 = P(|ηn−1| 6= 0 and|ηn| = 0) =
n∑

m=1

Pn,mq
2m (1.18)

by definition, we can conclude from (1.8), which is a result of lemma 1, that

Pn − Pn+1 = qn
∞∑
l=1

dn,lq
l (1.19)

with the coefficients{dn,l}, which can be expressed by{a(s)n,m}. This implies that if we
calculatePn as a power series ofq, going from n to n + 1 leaves the coefficients of
1, q, . . . , qn unchanged and terms with the coefficients{dn,l} give corrections of the order
O(qn+l). This property guarantees the convergence of the power series ofPn to a limit
P∞(q) as a formal power series ofq and this limitP∞(q) may be identified withP(q)
defined by (1.15). Moreover, if we know thecorrection terms{dn,l} for 1 6 l 6 M,
then we can correctly compute the expansionP∞ in q up to the coefficient ofqn+M using
the coefficients ofPn. Baxter and Guttmann (1988) performed the calculation ofPn up
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to n = 29 and gave the following remarkable conjectures. Letcn be the Catalan number
(1.13), then

dn,1 = cn

dn,2 = 2cn − cn+1

dn,3 = −2(n+ 1)cn + 2cn+1

dn,4 = 2cn−1 + (3n− 5)cn + 5cn+1 − 2cn+2

. . . . (1.20)

Inversely, they assumed the validity of these conjectures and extended their expansion ofP∞
from the 29th coefficient to the 41st coefficient. Recently Jensen and Guttmann (1995) use
this technique to extend the series from 41 terms to 54 terms. Such long series expansions
are useful to evaluatepc andβ with high precision by the Dlog Padé approximations.

Recently Bousquet-Ḿelou (1996) generally discussed the relation between the correction
terms and the numbers ofcompact animals(Duarte 1990, Delest 1991) of appropriate types
and prove the first two equalities of (1.20). On the other hand, since the relation between the
correction termsdn,1, dn,2 and the coefficientsa(0)n,1, a(1)n,2 are easily derived, these equalities
are derived as a corollary of theorem 2.

Corollary 3. For n > 1

dn,1 = a
(0)
n,1 = cn (1.21)

and

dn,2 = a
(1)
n,1 + a

(0)
n+1,1 − (n2 − 2n+ 3)a(0)n,1

= 2cn − cn+1. (1.22)

Bousquet-Ḿelou exactly calculated the first two correction terms not only for the bond
DP on the square lattice but also for the site DP on square lattice and the bond DP on the
honeycomb lattice. We would, however, like to put emphasis on the fact that concerning the
bond DP on the square lattice, our result is more general, since her results can be regarded
as a special case withm = 0 in our theorem 2.

Next we explain another application of theorem 2. Let

A(r)n,m =
r∑
s=0

(−1)r−s
(
(n− 1)(n− 2)− s

r − s

)
a(s)n,m. (1.23)

Then we have from (1.8)

Pn,m =
(n−1)(n−2)∑

r=0

Q(r)
n,mq

−2m+r+2 (1.24)

with

Q(r)
n,m = (pq)n−1(pq)m−1A(r)n,m. (1.25)

By (1.18) andP1 = 1, the percolation probability (1.15) is given by

P(p) = 1 −
∞∑
n=1

n∑
m=1

Pn,mq
2m. (1.26)

Using the expression given by (1.23)–(1.25), we have

P(p) = 1 − q2
∞∑
r=0

qrQ(r) (1.27)
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with

Q(r) =
∞∑

n=n(r)

n∑
m=1

Q(r)
n,m. (1.28)

Heren(0) = 1 andn(r) = d(1+√
1 + 4r)/2e+ 1 for r > 1, wheredNe is the least integer

not less thanN . Let

P̃ (R)(p) = 1 − q2
R∑
r=0

qrQ(r) (1.29)

for R = 0, 1, 2, . . . . We regardP̃ (R)(p) as theRth approximation for the percolation
probability. This gives a new systematic way to make approximations and theorem 2
enables us to obtain two approximants.

The paper is organized as follows. In section 2, first we prove lemma 1. Then we
derive a set of difference equations for the coefficientsa(0)n,m and a(1)n,m. These difference
equations are linear, in contrast to the equations in the proof by Bousquet-Mélou who
derived nonlinear difference equations fora(0)n,1 anda(1)n,1. We solve the difference equations
with appropriate boundary conditions and prove theorem 2 in section 3. Section 4 is devoted
to giving approximationsP̃ (0)(p) and P̃ (1)(p). There are some interesting future problems
related to this work, as discussed in section 5.

2. Difference equations

In this section we prove lemma 1 and derive the difference equations fora(0)n,m anda(1)n,m. Here
we regard the bond DP as a discrete-time Markov processηn as explained in the beginning
of section 1, whereηn is a set of sites occupied by a particle at timen. If we define a
random variableηn(x), for each sitex, asηn(x) = 1 if x ∈ ηn andηn(x) = 0 if x /∈ ηn, then
a setηn is identified with a particle configuration{ηn} which is expressed by a sequence of
numbers 0 and 1. The transition matrixω is defined asω(ξ ; ζ ) ≡ P(ηn = ξ |ηn−1 = ζ ) and
the probabilityPn,m, defined by (1.5), is given by the following formula,

Pn,m =
∑
ξ

∑
ζ

δ|ξ |,mω(ξ ; ζ )P (ηn−2 = ζ ) (2.1)

where theδl,m denotes Kronecker’s delta,|ξ | is the number of particles in a configuration
ξ and summations are taken over all possible configurations.

Each element ofω can be expressed as

ω(ξ ; ζ ) =
∑
i

ci(ξ ; ζ )qi . (2.2)

Let imin(ω(ξ ; ζ )) = min{i : ci(ξ ; ζ ) > 0}. We find that it depends on1m = |ξ | − |ζ | and
the number of clusters of particles in a configurationζ , c(ζ ). In other words, this number
is defined as

c(ζ ) = the number of sequences{0, 1} in the configuration{ζ }. (2.3)

We show the dependence ofimin(ω(ξ ; ζ )) on1m = |ξ | − |ζ | andc(ζ ) in table 1. We find
that, for each1m, imin(ω(ξ, ζ )) has a minimum value whenc = 1 (1m 6 0) andc = 1m

(1m > 0). If we defineimin(ω(1m)) = min{imin(ω(ξ, ζ )) : |ξ | − |ζ | = 1m} then

imin(ω(1m)) =


0 1m > 0

1 1m = 0

−21m 1m < 0.

(2.4)
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Table 1. The dependence ofimin(ω(ξ ; ζ )) on 1m = |ξ | − |ζ | and c(ζ ). The asterisks denote
the impossible cases.

c

1m 1 2 3 · · · min

.

.

.

3 ∗ ∗ 0 · · · 0
2 ∗ 0 1 · · · 0
1 0 1 2 · · · 0
0 1 2 3 · · · 1

−1 2 3 4 · · · 2
−2 4 4 5 · · · 4
−3 6 6 6 · · · 6
.
.
.

Proof of lemma 1. We prove (1.7) by induction with respect ton. When n = 1, the
probability P1,m is 1 for m = 1 and 0 form > 1, so (1.7) is correct forn = 1. For
expression (1.6) ofPn,m, we define

imin(Pn,m) = min{i : an,m,i > 0}. (2.5)

Formula (2.1) gives

imin(Pn,m) = min
1m

{imin(ω(1m))+ imin(Pn−1,m−1m)}. (2.6)

Now we assume (1.7) is correct forn = k − 1, i.e. ak−1,m,i = 0 for i 6 k − m − 2. This
assumption means thatimin(Pk−1,m−1m) > k − (m−1m)− 2. Therefore (2.4) gives

imin(ω(1m))+ imin(Pk−1,m−1m) >


k −m+1m− 2 1m > 0

k −m− 1 1m = 0

k −m−1m− 2 1m < 0.

(2.7)

The imin(Pk,m) has minimum value in the following cases:

imin(Pk,m) > k −m− 1 at


1m = +1

1m = −1

1m = 0.

(2.8)

This meansak,m,i = 0 for i 6 k −m− 1 and the proof is completed. �

Next we derive the difference equations fora(0)n,m anda(1)n,m. We lista(s)n,m for n = 1, 2, 3, 4
in table 2. In order to show how these coefficients are determined, we introducePn,m,c
which is a probability of havingm particles withc clusters at timen − 1. By definition∑

c Pn,m,c = Pn,m. In the same way asPn,m, it is expressed as

Pn,m,c =
∑
i

an,m,c,ip
n(n−1)−iqi (2.9)

with non-negative coefficients{an,m,c,i}. We definea(s)n,m,c ≡ an,m,c,n−m+s .
Consider the transitions from timen− 1 to timen. The state at timen− 1 is assigned

by the particle configuration onn sites. The particle configuration at timen depends on
this state at timen− 1 and the bond configuration on the 2n bonds connecting the sites at
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Table 2. A list of a(s)n,m defined by (1.9) forn = 1, 2, 3, 4. Other coefficients, which are not
listed here, are zeros.

s

m 0 1 2 3 4 5 6

n = 1
1 1

n = 2
1 2
2 1

n = 3
1 5 12 4
2 4 9 2
3 1 2 0

n = 4
1 14 98 264 336 208 64 8
2 14 94 241 280 147 38 4
3 6 38 90 88 30 4 0
4 1 6 13 10 1 0 0

time n − 1 and those at timen. Assume that there arem′ particles andc′ clusters at time
n− 1 andm particles at timen and thatr bonds are closed and 2n− r bonds are open in
the 2n bonds. The number of such configurations is given as

f (n,m′, c′, r,m) =
∑
i

∑
j

2i
(

2c′

j

) (
m′ − c′

m′ + c′ −m− j

) (
m′ − 2c′ + j

i

)
×

(
2(n−m′)

r − 2(m′ + c′ −m)+ j − i

)
(2.10)

where the summations are taken over the following ranges:

max{0, 2c′ −m} 6 j 6 min{2c′, m′ + c′ −m}
max{0, r − 2(n+ c′ −m)+ j} 6 i 6 min{m− 2c′ + j, r − 2(m′ + c′ −m)+ j}. (2.11)

The derivation of this formula is as follows. In the light coneV 0
n+1 from the origin, each

site at timen is connected with one or two sites at timen− 1 by bonds. According to the
particle configuration at timen−1, then+1 sites are classified into three sets asSk = {sites
connected withk occupied sites at timen − 1}, k = 0, 1, 2. The numbers of such sites
are given as|S1| = 2c′ and |S2| = m′ − c′. Let a set of bonds connecting sites inS1

(respectively,S2) with occupied sites at timen− 1 beB1 (respectively,B2). The remaining
2(n−m′) bonds make a setB0. We consider the case thatj bonds inB1 andm′ +c′ −m−j
pairs of nearest-neighbour bonds inB2 are closed and thusj sites inS1 andm′ + c′ −m− j
sites inS2 are vacated. The number of such choices is

(2c′
j

)(
m′−c′

m′+c′−m−j
)
. Since we have

assumed thatr bonds are closed, we have to choose morer − 2(m′ + c′ −m)+ j bonds to
be closed. We choosei bonds from the remaining bonds inB2 andr−2(m′ +c′ −m)+j− i
bonds fromB0 so that the particle number at timen is fixed to bem. The number of such
choices is 2i

(
m−2c′+j

i

)( 2(n−m′)
r−2(m′+c′−m)+j−i

)
. The region of summations (2.11) is decided by the

condition so thatx > 0, y > 0 andx > y for each combination
(
x

y

)
in (2.10).
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By using (2.10), the coefficienta(s)n+1,m is calculated froma(s
′)

n,m′,c′ as

a
(s)

n+1,m =
∑
1m

∑
s ′

∑
c′
f (n,m−1m, c′,1i,m)a(s

′)
n,m−1m,c′ (2.12)

with 1i = 1s −1m+ 1(1s = s − s ′,1m = m−m′), where the summation is taken over
the region satisfying the condition

imin(ω(1m)) 6 1i. (2.13)

We show the pair(imin(ω(1m)),1i) for each1m ands ′ in table 3.

Table 3. A list of the pair(imin(ω(1m)),1i) as a function of1m ands ′.

s′

1m 0 1 · · · s s + 1 s + 2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

2 (0, s − 1) (0, s − 2) · · · (0,−1) (0,−2) (0,−3)
1 (0, s) (0, s − 1) · · · (0, 0) (0,−1) (0,−2)
0 (1, s + 1) (1, s) · · · (1, 1) (1, 0) (1,−1)

−1 (2, s + 2) (2, s + 1) · · · (2, 2) (2, 1) (2, 0)
−2 (4, s + 3) (4, s + 2) · · · (4, 3) (4, 2) (4, 1)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Table 4. A list of the pair(imin(ω(1m)),1i) as a function of1m ands′ in the case ofs = 0.
The asterisks denote those satisfying condition (2.13).

0 1

2 (0,−1) (0,−2)
1 (0, 0)∗ (0,−1)
0 (1, 1)∗ (1, 0)

−1 (2, 2)∗ (2, 1)
−2 (4, 3) (4, 2)

In the case ofs = 0, (2.13) allows the combinations(s ′, c′,1i,1m) = (0, 1, 0, 1),
(0, 1, 1, 0) and (0, 1, 2,−1) as shown in table 4 and formula (2.10) gives thatf (n,m −
1m, c′,1i,m) = 1, 2, 1, respectively. Thus we have

a
(0)
n+1,m = a

(0)
n,m−1,1 + 2a(0)n,m,1 + a

(0)
n,m+1,1 for m > 2

a
(0)
n+1,1 = 2a(0)n,1,1 + a

(0)
n,2,1.

(2.14)

We find that condition (2.11) is satisfied in the cases = 0 only wheni = 0. This means
a
(0)
n,m,1 = a(0)n,m and a(0)n,m,k = 0 if k 6= 1 for any n andm. Thus we obtain the difference

equation fora(0)n,m as

a
(0)
n+1,m = a

(0)
n,m−1 + 2a(0)n,m + a

(0)
n,m+1 (2.15)

with the boundary conditions

a
(0)
1,1 = 1 a

(0)
1,m = 0 (m > 2) a

(0)
n,0 = 0 (n > 0). (2.16)
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Table 5. A list of a(0)n,m for 16 n 6 6. Blanks denote zeros.

m

6 1
5 1 10
4 1 8 44
3 1 6 27 110
2 1 4 14 48 165
1 1 2 5 14 42 132

1 2 3 4 5 6 n

Table 6. A list of the pair(imin(ω(1m)),1i) as a function of1m ands′ in the case ofs = 1.
The asterisks denote those satisfying condition (2.13).

0 1 2

3 (0,−1) (0,−2) (0,−3)
2 (0, 0)∗ (0,−1) (0,−2)
1 (0, 1)∗ (0, 0)∗ (0,−1)
0 (1, 2)∗ (1, 1)∗ (1, 0)

−1 (2, 3)∗ (2, 2)∗ (2, 1)
−2 (4, 4)∗ (4, 3) (4, 2)
−3 (6, 5) (6, 4) (6, 3)

Table 7. The combinations which satisfy condition (2.13) in the case ofs = 1.

No s′ c′ 1i 1m

1 0 1 1 1
2 0 1 2 0
3 0 1 3 −1
4 0 1 4 −2
5 0 2 0 2
6 0 2 1 1
7 0 2 2 0
8 0 2 3 −1
9 0 2 4 −2

10 1 1 0 1
11 1 1 1 0
12 1 1 2 −1

The a(0)n,m’s are given in table 5 for smalln.
In the case ofs = 1, condition (2.11) is satisfied wheni = 0 or i = 1. This means

a
(1)
n+1,m = a

(1)
n+1,m,1 + a

(1)
n+1,m,2, and thus we have to derive the equations fora

(1)
n+1,m,1 and

a
(1)
n+1,m,2. We have 12 cases which satisfy condition (2.13) (see table 6 and table 7). In

table 7, the cases with numbers from 5 to 9 haves ′ = 0 andc′ = 2 and give no contribution,
since we have founda(0)n,m,2 = 0 for anyn andm. In the other casesc′ = 1.

We consider the transition from the state at timen − 1 with m′ particles inn sites
and c′ = 1 to the state at timen with m = m′ + 1m particles inn + 1 sites. We have
|S1| = 2 and |S2| = m′ − 1. Let |Bi | be the number of bonds in the setBi, i = 0, 1, 2.
Then |B0| = 2(n−m′), |B1| = 2 and|B2| = 2(m′ − 1). First we consider the first case in
table 7. Since1i = 1, we have to choose one bond and make it closed. If we choose this



4356 N Inui and M Katori

bond from setB1, then1m = 0. Therefore we should choose it fromB0 ∪ B2 to make
1m = 1 (see figure 1, 1-(i)). The number of such choices is 2n− |B1| = 2(n− 1). In the
second case in table 7, we have to choose two bonds and make them closed. There are two
ways provided1m = 0: (i) choose one bond fromB1 and another bond fromB0 ∪ B2, or
(ii) choose two successive bonds fromB2 which are connected with the same site at timen

(see figure 1, 2-(i) and 2-(ii)), respectively. The numbers of choices are given as 4(n− 1)
andm′ − 1, respectively. It should be remarked that in case 2-(i), the number of clusters at
time n is c = 1, while in case 2-(ii),c = 2.

Figure 1. Typical configurations of bonds for each case in table 8.

Table 8 classifies the possible ways to choose appropriate closed bonds and showsc

and the numbers of choices (NC) also for the third and fourth cases. The typical bond
configurations are illustrated in figure 1.

The contributions from the cases with numbers from 10 to 12 in table 7 can be calculated
in the same way as in the case ofs = 0.

Combining the above considerations gives the following equations fora
(1)
n+1,m,1 and

a
(1)
n+1,m,2 as

a
(1)
n+1,m,1 = 2(n− 1)a(0)n,m−1,1 + 4(n− 1)a(0)n,m,1 + 2na(0)n,m+1,1 + 2a(0)n,m+2,1

+(a(1)n,m−1,1 + 2a(1)n,m,1 + a
(1)
n,m+1,1)

a
(1)
n+1,m,2 = (m− 1)(a(0)n,m,1 + 2a(0)n,m+1,1 + a

(0)
n,m+2,1) for n > 1.

(2.17)

Using (2.14) and by the fact thata(0)n,m = a
(0)
n,m,1 and a(1)n,m = a

(1)
n,m,1 + a

(1)
n,m,2, we obtain

the following difference equations fora(1)n,m:

a
(1)
n+1,m = a

(1)
n,m−1 + 2a(1)n,m + a

(1)
n,m+1 + 2(n− 1)a(0)n,m−1 + (4n− 3)a(0)n,m + 2na(0)n,m+1 + a

(0)
n,m+2

for n > 2 andm > 2 (2.18)
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Table 8. Classification of the possible ways to choose appropriate closed bonds for the cases
with numbers from 1–4 in table 7. Herec is the number of clusters at timen and NC is the
number of choices.

No How to choose closed bonds c NC

1 (i) One bond fromB0 ∪ B2 1 2(n− 1)
2 (i) One bond fromB1 and another bond fromB0 ∪ B2 1 4(n− 1)

(ii) Two successive bonds fromB2 connected with the same 2 m′ − 1
site at timen

3 (i) Two bonds fromB1 and one bond fromB0 ∪ B2 1 2(n− 1)
(ii) One bond fromB1 and two successive bonds fromB2 1 2

connected with the same site at timen,
one of which is located next to the first chosen bond

(iii) One bond fromB1 and two successive bonds fromB2 2 2(m′ − 2)
connected with the same site at timen, both of
which are not located next to the first chosen bond

4 (i) Two bonds fromB1 and two successive bonds fromB2 1 2
connected with the same site at timen,
one of which is located next to the first chosen bonds

(ii) Two bonds fromB1 and two successive bonds fromB2 2 m′ − 3
connected with the same site at timen, both of
which are not located next to the first chosen bonds

and

a
(1)
n+1,1 = 2a(1)n,1 + a

(1)
n,2 + 4(n− 1)a(0)n,1 + 2na(0)n,2 + a

(0)
n,3 for n > 2 (2.19)

with the boundary conditions

a
(1)
1,m = a

(1)
2,m = 0 (m > 1). (2.20)

The a(1)n,m’s are given in table 9 for smalln.

Table 9. A list of a(1)n,m for 16 n 6 6. Blanks denote zeros.

m

6 20
5 12 204
4 6 99 918
3 2 38 346 2354
2 9 94 639 3630
1 12 98 576 2970

1 2 3 4 5 6 n

3. Solving the difference equations

From now on we writeαn,m ≡ a(0)n,m andβn,m ≡ a(1)n,m for simplicity, and define

γn,m = βn,m + αn+1,m − (n2 − 2n+ 3)αn,m. (3.1)

Results (2.15), (2.18) and (2.19) of the previous section give the following linear difference
equations,

αn+1,m+1 = αn,m + 2αn,m+1 + αn,m+2 (3.2)
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and

γn+1,m+1 = γn,m + 2γn,m+1 + γn,m+2 + (αn+1,m+2 − αn+1,m+1)− δm,0αn,1 (3.3)

where δm,0 = 1 if m = 0 and δm,0 = 0 otherwise. Here we will solve these difference
equations with the following boundary conditions, respectively,

αn,m = 0 if n 6 0, or m 6 0, or m > n+ 1 (3.4)

αn,n = 1 for all n > 1 (3.5)

and

γn,m = 0 if n 6 −1, or m 6 0, or m > n+ 2 (3.6)

γn,n+1 = 1 for all n > 0 (3.7)

which are concluded from (2.16) and (2.20).
We introduce the generating functions

8(x, y) =
∞∑
n=1

n∑
m=1

αn,mx
nym (3.8)

and

9(x, y) =
∞∑
n=0

n+1∑
m=1

γn,mx
nym. (3.9)

Combining equations (3.2) and (3.3) with conditions (3.4) and (3.6), respectively, gives

8(x, y) = xy(a(x)− y)

x(y + 1)2 − y
(3.10)

and

9(x, y) = 1

x(y + 1)2 − y
[(y − 1)8(x, y)+ y(1 + xy)a(x)+ xyb(x)+ y2(x − 1)] (3.11)

where

a(x) =
∞∑
n=1

αn,1x
n (3.12)

and

b(x) =
∞∑
n=0

γn,1x
n. (3.13)

The functionsa(x) and b(x) are determined by conditions (3.5) and (3.7). First we
explain how to determinea(x). By definition (3.8) we have

8(x, y) =
∞∑
m=1

φm(x)y
m (3.14)

with

φm(x) =
∞∑
n=m

αn,mx
n. (3.15)

Condition (3.5) means that

φm(x) = xm + O(xm+1) (3.16)
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for all m > 1. Expansion of (3.10) as a power series ofy gives

φ1 = a(x)

φ2 = −1 −
(

2 − 1

x

)
a(x)

φ3 =
(

2 − 1

x

)
+

(
3 − 4

x
+ 1

x2

)
a(x)

. . . . (3.17)

Therefore conditions (3.16) form = 1, 2, 3 determine the functiona(x) up to the orderx5

as

a(x) = x + 2x2 + 5x3 + 14x4 + 42x5 + O(x6). (3.18)

It should be remarked that the coefficients 1, 2, 5, 14, 42 are the Catalan numbers.
Of course, if we obtainφm for higherm’s and impose condition (3.16), we will determine

the higher coefficients of the expansion ofa(x); however, we explain another method here.
Let X be the inverse function ofa(x); x = X(a), and we consider the following Laurent
expansion of 1/X(a) with respect toa:

1

x
= 1

X(a)
=

∞∑
k=−∞

δka
k. (3.19)

Since we have already known thata(x) = x + O(x2), (3.16) is equivalent to the condition

φm(a) = am + O(am+1) (3.20)

for all m > 1. Substituting (3.19) for 1/x in φ2 given by the second equation of (3.17)
and imposing (3.20) withm = 2, we haveδk = 0 for k 6 −2, δ−1 = 1, δ0 = 2 and
δ1 = 1. The similar procedure form = 3 concludesδ2 = δ3 = 0. Thus we have
1/x = (1+ a)2/a+ O(a4). As explained in appendix A.1, we can prove thatδk = 0 for all
k > 2 and we have the result

x = a

(1 + a)2
. (3.21)

This gives a quadratic equation fora and we choose the solution which has the expansion
in the form (3.18) as

a(x) = 1

2x
{1 − 2x − √

1 − 4x}. (3.22)

If we assumex 6 1
4, we can expanda(x) in x and prove that the coefficients are generally

given by the Catalan numbers{cn}:

a(x) =
∞∑
n=1

cnx
n. (3.23)

Next we considerb(x) defined by (3.13). First we transform the variablex in (3.11)
into a(x) by (3.21). We obtain

9 = y

(1 − ay)2(y − a)
[y(a + 1){(a3 − a + 1)− ay} − a(1 − ay)b(x)]. (3.24)

Let

9 =
∞∑
m=1

ψm(a)y
m. (3.25)
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Then (3.7) is equivalent to the condition

ψm(a) = am−1 + O(am) (3.26)

for all m > 1. Following a similar argument, we can prove that

b = 1 − a2. (3.27)

More details are given in the appendix, A.2.
Now we can completely determine the generating functions as

8(x, y) = a(x)y

1 − a(x)y
(3.28)

and

9(x, y) = −1 + a(x)

a(x)
+ (1 + a(x))2

a(x)(1 − a(x)y)
− 1 + a(x)

(1 − a(x)y)2
(3.29)

with (3.22). Expanding these functions with respect toy, we find

φm(x) =
∞∑
n=m

αn,mx
n = a(x)m (3.30)

and

ψm(x) =
∞∑

n=m−1

γn,mx
n = a(x)m−1 − (m− 1)a(x)m −ma(x)m+1 (3.31)

for m > 1. It follows that

γn,m = αn,m−1 − (m− 1)αn,m −mαn,m+1. (3.32)

It is easy to confirm that this is equivalent to the relation (1.11) of theorem 2.
Already we have shown thatαn,1 = cn by (3.12) and (3.23). Thus it is easy to prove

(1.10) of theorem 2 using equation (3.2) inductively. It is noticed that (1.10) can be
concluded from (3.30) with (3.22) directly, if the following identity is available,

n−1∑
k=m−1

bk+m−2,k−m+1bn−k,n−k−1 = bn+m−1,n−m (3.33)

for 1 6 m 6 n, wherebn,m is the ballot number defined by (1.12). Now the proof of
theorem 2 is complete. �

4. Approximations

In this section, we follow the procedure given at the end of section 1 and give two
approximationsP̃ (0)(p) and P̃ (1)(p) for the percolation probability. By definition (1.23),
A(0)n,m = αn,m andA(1)n,m = βn,m − (n− 1)(n− 2)αn,m. Sinceβn,m = a(1)n,m is given by (1.11)
of theorem 2, we have

A(1)n,m = (n−m)αn,m − (m+ 1)αn,m+1. (4.1)

It follows that

Q(0) =
∞∑
n=1

n∑
m=1

(pq)n−1(pq)m−1αn,m (4.2)
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and

Q(1) =
∞∑
n=3

n∑
m=1

(pq)n−1(pq)m−1{nαn,m −mαn,m − (m+ 1)αn,m+1}. (4.3)

We can find that they are derived from the generating function (3.8) ofαn,m anda(x) given
by (3.12) as follows:

Q(0) =
[

1

xy
8(x, y)

]
x=y=pq

(4.4)

and

Q(1) =
[

1

x

∂

∂x
8(x, y)− 1 + x

x2

∂

∂y
8(x, y)+ 1

x2
a(x)

]
x=y=pq

. (4.5)

Using the result (3.28) and the facta(pq) = (1 − p)/p, we obtain

P̃ (0)(p) = 1 − (1 − p)2
1

p3(2 − p)
(4.6)

and

P̃ (1)(p) = 1 − (1 − p)2
[

1

p3(2 − p)
+ (2p2 − 3p − 1)(p − 1)3

p5(p − 2)2(2p − 1)

]
. (4.7)

Definep(R)c = inf{p ∈ [0, 1] : P̃ (R) > 0} for R > 0. We havep(0)c = 0.5310. . . andp(1)c =
0.6103. . . . Both approximants are increasing concave functions ofp for p(R)c 6 p 6 1 and
go to 1 asp → 1. We expect thatp(R)c will monotonically approach the exact critical value
asR → ∞, which is numerically estimated aspc = 0.644 700 6±0.000 001 0 by the recent
paper of Jensen and Guttmann (1995).

For generalR > 0, we see

P (R)(p)− P(p) = O(qn(R+1)+R+3) (4.8)

wheren(r) = d(1 + √
1 + 4r)/2e + 1. The formula forA(s)n,m for s > 2, similar to (4.1), is

required when giving higher approximations.

5. Future problems

We have presented some rigorous results concerning the coefficients in a series expansion
of the percolation probability for the bond directed percolation on a square lattice. As a
generalization of the fact that the Catalan number plays an important role in extending the
series expansion of the percolation probability, we have shown that the ballot numbers are
very useful in expressing the coefficientsa(s)n,m in a series expansion ofPn,m. In the present
paper we have proved thata(0)n,m anda(1)n,m are expressed as linear combinations of the ballot
numbers. Moreover, we can prove thata(2)n,m is also expressed using the ballot numbera(0)n,m
as

a(2)n,m = f (n,m)a(0)n,m − (m+ 2)(m+ 1)2a(0)n,m+1 + 1
2m(m+ 3)a(0)n,m+2 + 2a(0)n−1,m−1

+2a(0)n−1,m + δm,1a
(0)
n−1,m+1

with

f (n,m) = 1
2n

4 − 2n3 − 4m2 − 3m+ 2

2m
n2 + 2m3 + 9m2 + 3m+ 3

m
n

−(m3 + 9
2m

2 + 15
2 m+ 2) for n > 2 andm > 1 (5.1)
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and

a(2)n,m = 0 for n 6 1 andm > 1

whereδm,1=1 if m = 1 andδm,1 = 0 otherwise. Since the derivation of this result is long,
we will report it elsewhere.

Baxter and Guttmann (1988) and Jensen and Guttmann (1995) conjectured that the
correction termsdn,l are expressed as rational functions of the Catalan number for anyl as
(1.20). In this paper we have proved their conjectures fordn,1 anddn,2, and the above result
(5.1) gives the third onedn,3 = −2(n+ 1)cn+ 2cn+1. Although the proof of the conjectures
for higherl remains an open problem, our results reported in this paper suggest a generalized
conjecture: the coefficientsa(s)n,m in a series expansion ofPn,m are generally expressed using
the ballot numbers. It is a future problem to prove this generalized conjecture and use it to
produce a more convincing series expansion forPn,m.

Our method can be applied to the site directed percolation (SDP). We found that the
first correction termdn,1 for the SDP is given by the following difference equations,

an+1,m =
n∑

k=m−1

(k −m+ 2)an,k (5.2)

with a1,1 = 1, a1,m = 0 (m > 2) andan,0 = 0 (n > 0), and

dn,1 =
n∑

m=1

an,m. (5.3)

For small n, {dn,1} are 1, 3, 12, 55, 273. . . . Onody and Neves (1992) conjectured that
dn,1 = (3n)!/{n!(2n + 1)!} and it was proved by Bousquet-Mélou (1996) by studying
directed animals. Another proof will be given by solving these difference equations.

We have found good properties of coefficients in series expansion, some of which were
used in this paper. It is an interesting problem to estimate the upper and lower bounds for
coefficients using these regularities.
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Appendix

A.1. Proof of (3.21)

Let

1

x
= (1 + a)2

a
+�(a) (A.1)

with �(a) = O(a4). Then (3.10) becomes

8(x, y) = ay

1 − ay{1 + (�(a)/a)/(1 − y/a)}

=
∞∑
m=1

[
am +

m−1∑
l=1

�(a)l
m−1∑
n=l

(
n

l

) (
l +m− n− 2

l − 1

)
a−m−l+2(n+1)

]
ym. (A.2)
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We see that

φm = am for 16 m 6 3 (A.3)

and

φm = am + �(a)

am−3
+ (higher-order terms ofa) for m > 4. (A.4)

Condition (3.20) can be satisfied for allm, if and only if �(a) = 0.

A.2. Proof of (3.27)

Expansion of (3.24) iny gives

ψ1 = b

ψ2 = −a3 − a2 + a − 1

a
+ b

(
a + 1

a

)
ψ3 = −2a4 − 2a3 + a2 − 1

a2
+ b

(
a2 + 1 + 1

a2

)
. (A.5)

. . . .

Let b = ∑∞
k=−∞ εka

k. If we put condition (3.26) form = 1, 2, 3, we haveεk = 0 for
k 6 −1, ε0 = 1, ε1 = 0, ε2 = −1, ε3 = 0 andε4 = 0, that is

b = 1 − a2 + ω(a) (A.6)

with ω(a) = O(a5). Substituting (A.6) forb in (3.24) gives

9 = − 1 + a

a
+ (1 + a)2

a(1 − ay)
− 1 + a

(1 − ay)2
− ay

(1 − ay)(y − a)
ω(a)

=
∞∑
m=0

[
am−1 − (m− 1)am −mam+1 + 1{m>1}

ω(a)

am−1

m−1∑
s=0

a2s

]
ym (A.7)

where 1{m>1} = 1 if m > 1 and 1{m>1} = 0 otherwise. Therefore condition (3.26) can be
satisfied for allm > 1, if and only ifω(a) ≡ 0.
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